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Abstract

A stochastic variational multiscale method with explicit subgrid modelling is provided for numerical solution of
stochastic elliptic equations that arise while modelling diffusion in heterogeneous random media. The exact solution of the
governing equations is split into two components: a coarse-scale solution that can be captured on a coarse mesh and a
subgrid solution. A localized computational model for the subgrid solution is derived for a generalized trapezoidal time
integration rule for the coarse-scale solution. The coarse-scale solution is then obtained by solving a modified coarse for-
mulation that takes into account the subgrid model. The generalized polynomial chaos method combined with the finite
element technique is used for the solution of equations resulting from the coarse formulation and subgrid models. Finally,
various numerical examples are considered for evaluating the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we address a variational multiscale (operator upscaling) framework for numerical simulation
of transient diffusion in a random medium whose diffusion coefficient is characterized by the presence of fea-
tures at multiple length scales. The potential applications for the problem include heat transfer in composites
[1,2] and flow in porous media [3], wherein, spatial variation in material properties requires a statistical
description owing to gappy data and assumptions in constitutive models. Fully-resolved transient computa-
tions require spatial and temporal discretizations that can resolve the smallest length scales in the material
data (here, the diffusion coefficient) and time scales in the solution, respectively. However, in practice, a
coarse-scale description of the solution is deemed adequate. It is thus desirable to develop computational
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techniques that ‘‘solve for a coarse-scale solution by defining an appropriate coarse-scale problem that cap-
tures the effect of the fine-scales’’ [4]. This forms the backbone of most upscaling methods (see [5] for a com-
prehensive review).

Current research on upscaling techniques (more specifically, multiscale methods) aims at the derivation of a
coarse-scale formulation that has the following characteristics: (i) it contains adequate fine-scale information,
i.e. the fine-scale solution can be reconstructed from the coarse solution and subgrid results, (ii) the compu-
tation cost for the coarse-scale problem should scale sub-linearly with respect to the fully-resolved computa-
tion, and (iii) it should avoid assumptions of special problem structures like periodicity and scale separation.
However, when these structures are present, we should be able to exploit them for increasing computation
speed.

The most popular techniques developed for upscaling in deterministic context fall under the category of
multiscale methods viz. the variational multiscale VMS method (also known as operator upscaling) [6–8],
the heterogenous multiscale method [9,10], and the multiscale finite element method [11–13]. These methods
typically involve introduction of multiscale basis functions at the coarse-scale. These multiscale basis functions
include information about the fine-scale heterogeneities in the problem. Further related techniques involve the
generalized finite element method [14] and the residual-free bubbles [15].

Parallel to the above developments in deterministic upscaling techniques, there have been considerable
advances in computationally efficient stochastic analysis approaches. Traditionally, stochastic analysis tech-
niques for partial differential equations (PDEs) involve Monte-Carlo sampling [16], perturbation analysis
[17] and Neumann expansions [18]. However, these methods are limited either by the prohibitive computation
cost, inability to handle large fluctuations and nonlinearity and/or complexity involved in derivation of these
techniques (e.g. deriving perturbation methods for analyzing higher-order solution statistics becomes increas-
ingly complex). These shortcomings are alleviated by using the generalized polynomial chaos expansion
(GPCE) approach [19], a technique for representing stochastic fields with finite variance using Wiener–Askey
hypergeometric polynomials [20,21]. The GPCE is a significant advancement on the spectral stochastic
method [22] that uses Hermite polynomials for representing Gaussian and allied stochastic processes (e.g.
log-normal process as an exponential of a Gaussian process). The GPCE approach has been used successfully
in the context of fluid-flow [23,24], fluid-structure interaction [25] and natural convection [24]. A survey of
numerical challenges in the implementation of the GPCE approach for the solution of stochastic PDEs is
provided in [26].

Using deterministic upscaling techniques for statistical analysis of the solution typically involves the use of
computationally expensive Monte-Carlo methods. Recently, there has been a considerable interest in stochas-
tic homogenization, upscaling methods [27,28]. These methods however employ restrictive assumptions on the
problem structure viz. periodicity and scale separation. However, considering the advances in deterministic
upscaling methods and stochastic analysis approaches, it is time to address direct incorporation of the inherent
randomness in material data and the effect of modelling assumptions in the design of upscaling methods. In
this paper, we combine the variational multiscale VMS method [29,30], the multiscale finite element method
and deterministic operator upscaling technique [1,3,4,6,11] and the GPCE/polynomial chaos approach [19,22]
to derive a variationally consistent upscaling technique for the stochastic transient diffusion equation. The
authors emphasize that though all of the above techniques are not a part of their original work, this paper
introduces a framework to combine these techniques to derive a stochastic upscaling technique. Also, the
paper addresses operator upscaling in the context of a transient multiscale diffusion equation, which to the
best of the authors’ knowledge is a novel contribution. Since randomness is effectively seen as an additional
dimension in the problem [31], our method essentially performs upscaling for a class of problems correspond-
ing to various realizations of the random material data (here, the diffusion coefficient).

The choice of VMS as the upscaling method and GPCE as the stochastic analysis method is motivated by a
number of reasons. VMS and operator upscaling methods have emerged in recent years as computational
paradigms for development of multiscale analysis [6,29]. The VMS approach essentially involves splitting the
variational formulation for the governing equations into a coarse and a fine-scale part. The fine-scale part
is then solved approximately to obtain the fine-scale solution model, that is substituted in the coarse-scale part
of the variational formulation to obtain an upscaled problem. The authors have contributed to the develop-
ment of the stochastic VMS method, wherein, algebraic models are used for the fine-scales and the GPCE
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approach is used for representing stochastic quantities. The stochastic VMS formulation was tested against
fluid flow and natural convection in the presence of uncertainty [32,33].

This paper is organized as follows: Section 2 provides some probability preliminaries followed by a brief
discussion on Karhunen-Loève and generalized polynomial chaos expansions. The transient multiscale sto-
chastic diffusion problem is defined in Section 3. This is followed by the definition of the VMS (operator
upscaling approach), wherein, model equations are derived for the fine-scale solution. Finally, we derive
the upscaled coarse formulation. Algorithmic issues involved in the implementation of the stochastic VMS
approach are described in Section 4. In Section 5, we consider two numerical examples in order to investigate
the stochastic VMS approach. Convergence studies and comparisons with a fully-resolved stochastic finite ele-
ment solution are provided wherever possible. We finally conclude with a summary of the paper in Section 6.

2. The generalized polynomial chaos approach

In this section, we present some probability preliminaries, and a brief discussion on the Karhunen–Loève
expansion (KLE) and the generalized polynomial chaos expansion (GPCE). For a considerably rigorous treat-
ment of the above topics, the readers are referred to the original papers on the following: Stochastic finite
elements and polynomial chaos [22–24,31,34], homogeneous chaos and theory behind spectral representation
of uncertainty [35], generalized polynomial chaos approach [19,25,36,37] and the references therein.

2.1. Probability preliminaries

A complete probability space [38] is defined as the triple ðX;F;PÞ, where X is the set of outcomes, F is the
r-algebra of subsets of X, and P is a probability measure that maps the r-algebra to [0, 1]. A random variable
X is a function that maps X to a real interval B, with a probability density function
fX ðxÞ :¼ d

dx
P½X 6 x�.
In this paper, we will denote a random variable X as X(x), where x 2 X. The mathematical expectation [38]
operator with respect to X(x) is defined as
EðX Þ :¼
Z

X
X ðxÞdPðxÞ ¼

Z
B

xf X ðxÞdx. ð1Þ
The complete function space L2(X) can be defined as the set of all random variables that are mean-square
integrable [38]. Incidentally, L2(X) is also a Hilbert space with the inner product
ðX ; Y Þ :¼ EðfX � EðX ÞgfY � EðY ÞgÞ; X ; Y 2 L2ðXÞ. ð2Þ
Convergence in L2(X) implies convergence in probability and convergence in distribution. As an extension of
the above framework, a space-time stochastic process W defined on the spatial domain D and temporal do-
main T can be denoted as a function W(x, t, x). Theoretically, W(x, t, x) can be represented as a random
variable at each spatial and temporal location, hence requiring an infinite number of random variables.
For computational reasons, we are interested in a reduced-order representation of a stochastic process using
a few random variables. Here, we briefly look at KLE and GPCE, two popular ways of representing an L2

stochastic process as a spectral series expansion in orthonormal random variables. For a more detailed
description, consult [22,25,33].

2.2. Karhunen–Loève expansion

The Karhunen–Loève expansion [20] is a technique for representing a L2 stochastic process in a series
expansion involving the eigenvalues and eigenfunctions of its covariance kernel as follows:
W ðx; t;xÞ ¼ EðW Þ þ
X1
i¼1

ffiffiffiffi
ki

p
W iðx; tÞniðxÞ; ð3Þ
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where EðW Þ is the mean of the stochastic process and ni(x) are appropriately defined orthonormal random
variables [22]. The KLE generates uncorrelated random variables that can be orthonormalized. The eigen-
values ki and eigenfunctions Wi(x, t) are defined from the following eigenvalue problem:
Z

D�T
RWW ðx1; t1; x2; t2ÞW iðx2; t2Þdx2 dt2 ¼ kiW iðx1; t1Þ; ð4Þ
where RWW(x1, t1, x2, t2) is the covariance function of W(x, t, x). The KLE is the optimal representation in
mean-square sense. However, it requires the knowledge about the underlying stochastic process and its covari-
ance kernel. Hence, the KLE is only used for representing the stochastic inputs. For more details, consult
[22,31, and the references therein]. For computational purposes, the KLE is truncated to a finite number
(N + 1) of expansion terms (including mean). Hence, the space-time stochastic process W(x, t, x) can be
approximated using N random variables. In a typical stochastic input–output system with W(x, t, x) as the
input, the KLE is used to represent the input in a series involving N orthonormal random variables. N, here
is called the ‘‘KLE dimension’’ or the ‘‘input dimensionality’’. The output can now be represented as a func-
tion in space, time and the N orthonormal random variables. We will now describe the GPCE, a popular tech-
nique for representing the output.

2.3. Generalized polynomial chaos expansion

The GPCE is a technique for representing a L2 stochastic process as a sum of its projections on an appro-
priately chosen basis of L2(X). The original polynomial chaos comprised of Hermite polynomials in Gaussian
random variables [35]. Cameron and Martin later proved that the polynomial chaos expansion converges to
any L2 stochastic process in mean-square sense [21]. Though the convergence rate of the original polynomial
chaos is exponential for Gaussian and related processes (e.g. lognormal), the convergence rate is considerably
slower for other types of processes (e.g. uniform and Gamma) [37].

In order to consider general random inputs, the GPCE uses orthogonal polynomials from the Askey
scheme as a basis in L2(X). Assuming that the stochastic input can be represented in a truncated KLE with
N orthonormal random variables n1, . . . ,nN, in general, the GPCE of a space-time stochastic process (output)
can be written in the following form [19,22]
W ðx; t;xÞ ¼
X1
i¼0

W iðx; tÞfiðxÞ; ð5Þ
where fi(x) are hypergeometric orthogonal polynomials in n1(x), . . . ,nN(x) from the Askey series such that
their weighting functions equal the joint probability density function of the stochastic input e.g. if the stochas-
tic input can be represented as a uniform random variable n(x), then fi(x) are Legendre polynomials in n(x)
[19,39] such that
f0 ¼ 1; f1 ¼ n; f2 ¼
1

2
ð3n2 � 1Þ; . . . .
Since each type of polynomial in the Askey scheme forms a complete basis of L2(X), the convergence theorems
of Cameron and Martin can be extended to the GPCE as well (consult [21,39] for an extensive overview).
Again, for computational reasons, we often work with a truncated form of the GPCE.

Testing convergence of truncated GPCE: The truncated GPCE expansion of a stochastic process is charac-
terized by two parameters viz. the dimension and order of the expansion. The dimension of the expansion is
equal to the number of random variables used in the Karhunen–Loève expansion of the stochastic inputs. The
order of the expansion is the highest order of Askey polynomials used in the GPCE. For example, a one-
dimensional fourth-order Legendre chaos expansion implies that all one-dimensional Legendre polynomials
up to fourth-order are included in the GPCE.

Since the accuracy of the truncated GPCE depends on the order of the expansion, we require techniques to
determine the optimal truncation order. We use the weak-Cauchy convergence criterion for this purpose. The
technique can be described as follows: assume that the dimension of the GPCE is known. Let the guess for
optimal truncation order be q. Construct an order m GPCE, where m = q + 1, q + 2. The number of terms
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(excluding mean) in the GPCE denoted here by P(q) can be calculated as (N + r)!/(N!r!), where N is the dimen-
sion and r is the order of the expansion. Using the above discussion, we can write the order q approximation
and order m approximation as follows:
W ðqÞðx; t; hÞ ¼
XP ðqÞ
i¼0

W iðx; tÞfiðxÞ; W ðmÞðx; t; hÞ ¼
XPðmÞ
i¼0

W iðx; tÞfiðxÞ. ð6Þ
In the weak-Cauchy convergence criterion, we require that the L2 norm of the difference in the two approx-
imations be negligible, i.e.
E :¼ kW ðqÞ � W ðmÞkL2ðXÞ < �; 0 < �� 1; m ¼ qþ 1; qþ 2. ð7Þ
Note that the error measure E is a space-time function and that the above convergence should hold point-wise.
These checks are made a priori in order to determine the optimal order of the GPCE. We note that though con-
vergence in weak Cauchy sense is a good indicator of the convergence of the GPCE expansion, there are several
other indicators that may have to be tested. For a survey of these convergence criteria, readers are referred to [40].

3. Mathematical model and variational multiscale method

3.1. Problem definition and variational formulation

Let D, T and X denote a closed polygonal domain, a time interval and a suitable probability space, respec-
tively. The transient diffusion in a heterogenous medium with a spatially varying random diffusion coefficient
k(x, x) can be written as the following stochastic partial differential equation (SPDE):
u;t ¼ r � ðkðx;xÞruÞ þ f ðx; t;xÞ; x 2 D; t 2T and x 2 X; ð8Þ

where, u,t denotes the partial time derivative ou/ot. The solution u ” u(x, t,x) and the source term f(x, t, x) are
real-valued space-time stochastic fields. To simplify the presentation of our method, we further assume that
the diffusion coefficient is isotropic.

For closure, we also assume the following initial and boundary conditions:
uðx; t;xÞ ¼ ugðx; t;xÞ; x 2 oD; t 2T and x 2 X; ð9Þ
uðx; 0;xÞ ¼ u0ðx;xÞ; x 2 D and x 2 X. ð10Þ
In order to introduce the variational form for Eqs. (8)–(10), we need to define the following function space
[38,41]:
V 0 ¼ L2ðX; L2ðT; H 1ðDÞÞÞ ¼def v :

Z
X

Z
T

Z
D

ðv2ðx; t;xÞ þ ðrvðx; t;xÞÞ2ÞdPdt dx <1
� �

.

Using the definition of V0, the function space for the solution U and the trial function space V can now be
defined as
U ¼ fu : u 2 V 0; u ¼ ug; x 2 oDg; V ¼ fv : v 2 V 0; v ¼ 0; x 2 oDg. ð11Þ

The variational formulation for Eqs. (8)–(10) can now be written as: find u 2 U such that for all v 2 V
ðu;t; vÞ þ ðkru;rvÞ ¼ ðf ; vÞ; ð12Þ

where
ðu; vÞ ¼def
Z

X

Z
D

uvdxdP. ð13Þ
3.2. Additive scale decomposition and variational multiscale method

In the variational multiscale approach, we consider the exact solution u to be made up of contributions
from two different scales, namely, the coarse-scale solution uC, that can be resolved using a coarse-mesh
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and a subgrid solution uF. In short, u = uC + uF (consult [15,29,30,42] for further details). This additive sum
decomposition induces a similar decomposition for the function spaces as U = UC ¯ UF and V = VC ¯ VF,
respectively. Typically, the coarse-scale function spaces UC and VC are finite dimensional and are character-
ized by piecewise polynomials defined on a coarse-mesh.

The main idea behind the VMS (operator upscaling) method is to develop models for characterizing the
effect of the subgrid solution on the coarse-scale solution and to subsequently derive a modified coarse-
scale formulation that only involves uC [32,42,43]. In order to do that, we split the variational formula-
tion given in Eq. (12) as the following coarse-scale and subgrid equations: Find uC 2 UC and uF 2 UF such
that
ðuC
;t þ uF

;t ; v
CÞ þ ðkruC þ kruF;rvCÞ ¼ ðf ; vCÞ 8vC 2 V C; ð14Þ

ðuC
;t þ uF

;t ; v
FÞ þ ðkruC þ kruF;rvFÞ ¼ ðf ; vFÞ 8vF 2 V F. ð15Þ
We will now proceed to solve Eq. (15) by applying localization assumptions to obtain an approximate model
for the subgrid solution uF. Subsequently, we will use the model for subgrid solution to eliminate uF in Eq. (14)
to obtain a modified formulation defined only in terms of uC.

3.3. Subgrid modeling

Assume that the spatial domain is discretized using a coarse-mesh into disjoint sub-domains
DðeÞ; e ¼ 1; . . . ;Nel, where, (e) denotes the sub-domain number. We will refer to these sub-domains as ‘‘coarse
elements’’. Let each coarse element be further discretized using a subgrid mesh into ‘‘NelF

ðeÞ’’ disjoint sub-
domains (also referred to as ‘‘subgrid elements’’).

As considered in [3,4,7,8], we will now assume that the subgrid solution is a sum of two components ûF and
uF0 that obey the following variational equations:
ðuC
;t ; v

FÞ þ ðûF
;t ; v

FÞ þ ðkruC;rvFÞ þ ðkrûF;rvFÞ ¼ 0; ð16Þ
ðuF0

;t ; v
FÞ þ ðkruF0;rvFÞ ¼ ðf ; vFÞ; ð17Þ
where ûF incorporates entire coarse-scale solution information and uF0 is independent of the coarse-scale
solution. The dynamics of uF0 is driven by the projection of the source term f(x, t, x) onto the subgrid trial
function space VF.

By Eq. (16), the term ûF behaves as a mapping from coarse-scale solution to the subgrid solution. Hence, we
refer to ûF as the coarse-to-subgrid (C2S) map. Owing to the affine nature of Eq. (17), we shall refer to uF0 as
the affine correction term.

In the current form, Eqs. (16) and (17) are defined over the entire spatial domain and are exact. Hence, their
numerical simulations possess the same computational requirement as the fully-resolved problem (fine-mesh
and small time-stepping). In order to localize the calculations of the subgrid solution, we will consider restric-
tions of Eqs. (16) and (17) to each coarse element DðeÞ. This restriction can be written as follows: Find
ûF 2 U ðeÞ and uF0 2 U ðeÞ0 such that for all v 2 V(e), Eqs. (16) and (17) hold. The function spaces U(e) and
U ðeÞ0 are restrictions of V0 to the coarse element DðeÞ with suitable boundary conditions. The derivations in
subsequent sections are performed for a single coarse element DðeÞ.

3.4. C2S map and multiscale basis functions

Let us assume that in a fully-resolved direct numerical simulation, the dynamics of the exact solution can be
captured using a fine time-step of dt. Since the length scales of interest in the coarse solution are far greater
than the smallest length scale in the exact solution, we assume that the coarse time-step Dt is much larger in
comparison to dt [44–46]. Let us consider a coarse time-step Dt = [tn, tn + 1]. Let t 0 be the local time coordinate
defined such that at tn, t 0 = 0 and at tn + 1, t 0 = Dt.

Let us also assume a piecewise polynomial finite element representation for the coarse solution inside a
coarse element DðeÞ (please note that (e) is suppressed henceforth to simplify notation):



660 B. Velamur Asokan, N. Zabaras / Journal of Computational Physics 218 (2006) 654–676
uCðx; t;xÞ ¼
XNbf

b¼1

uC
b ðt0;xÞWbðxÞ; ð18Þ
where Nbf denotes the number of finite-element shape functions (piecewise polynomials) defined on the coarse
element [32,33]. Let us further assume a truncated generalized polynomial chaos expansion with PC + 1 terms
for each of the coefficients uC

b ðt0;xÞ
uC
b ðt0;xÞ ¼

XPC

s¼0

uC
bsðt0ÞfsðxÞ. ð19Þ
Thus, the stochastic finite-element (spatial finite-element + GPCE) representation of the coarse solution can
be written using local time coordinate as
uCðx; t;xÞ ¼
XNbf

b¼1

XPC

s¼0

uC
bsðt0ÞfsðxÞWbðxÞ; ð20Þ
where uC
bsðt0Þ denotes the nodal solution (each node has PC + 1 degrees of freedom) and fs(x) are polynomials

from the hypergeometric Askey series. The form of Eq. (20) has been used in our earlier works [32,33].
Note: We have represented the left hand side of Eqs. (18) and (20) as a function of the global time coordi-

nate t and the right hand side as a function of the local time coordinate t 0 with a tacit understanding that t and
t 0 are related as t 0 = t � tn in the interval t 2 [tn, tn + 1].

For the C2S map ûF, we seek a representation similar to Eq. (20) based on Green’s function theory [8]
ûFðx; t;xÞ ¼
XNbf

b¼1

XPC

s¼0

uC
bsðt0Þ/

F
bsðx; t0;xÞ. ð21Þ
The fine-scale variational formulation of Eq. (16) can be re-written after substitution of Eqs. (20) and (21) as
follows:
ðuC
bs;tfsWb; vFÞ þ ðuC

bs;t/
F
bs þ uC

bs/
F
bs;t; v

FÞ þ ðkuC
bsr/F

bs;rvFÞ þ ðkuC
bsrWbfs;rvFÞ ¼ 0; ð22Þ
where the repeated indices b and s indicate a summation over 1, . . . ,Nbf and 0, . . .,PC, respectively (with sim-
ilar notation applied to subsequent equations as well). Also, for clarity of presentation, the dependence on x, t
and x is not shown in the expressions for WbðxÞ; fsðxÞ;/F

bsðx; t0;xÞ and kðx;xÞ. The above equation can be
further simplified as follows:
ðfuC
bsðfsWb þ /F

bsÞg;t; vFÞ þ ðkrfuC
bsðfsWb þ /F

bsÞg;rvFÞ ¼ 0. ð23Þ
For a deterministic analog of the above equation, the readers are referred to [42].
Without loss of generality, we can assume the following representation for the coarse-scale nodal solutions

uC
bsðt0Þ inside the coarse time-step
uC
bsðt0Þ ¼ Aðt0Þ~uC

bs þ Bðt0Þ�uC
bs; ð24Þ
where ~uC
bs and �uC

bs denote the nodal coefficients in the GPCE of the coarse solution at the start and end of the
coarse time step (see Fig. 1). A(t 0) and B(t 0) are special positive functions that obey the following relations:
Aðt0Þ þ Bðt0Þ ¼ 1; Að0Þ ¼ 1; AðDtÞ ¼ 0; Bð0Þ ¼ 0; and BðDtÞ ¼ 1. ð25Þ

Eq. (24) involves representation of a function as a convex combination of two functions [41].
The representation given in Eq. (24) is quite general and incorporates several well-known time integration

rules. For example, A(t 0) = (Dt � t 0)/Dt and B(t 0) = t 0/Dt yields a backward-Euler time integration rule.
From Eqs. (21) and (24), we can write the C2S map as follows:
ûF
bsðx; t;xÞ ¼

XNbf

b¼1

XP C

s¼0

½~uC
bsAðt0Þ/

F
bsðx; t0;xÞ þ �uC

bsBðt0Þ/
F
bsðx; t0;xÞ�. ð26Þ



C  

û

û

F

ûC

( )A t ′ ( )B t ′

1 1

t′ tΔ

Coarse
solution field 
at start of 
time step

Coarse
solution field 
at end of 
time step

γ
n

n

γγ

γ
n

n

A B

Fig. 1. (A) Schematic of the time integration framework: Dt is the coarse-time step and t 0 is the local time coordinate. The integration
parameters A(t 0) and B(t 0) are shown in the figure. Also, ~uC

bs and �uC
bs are identified as the coarse solution fields at the start and end of the

coarse time step, respectively. (B) Schematic of a typical coarse element sub-domain: The coordinates normal and tangential to the element
edges are denoted by the letters n and c, respectively.
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We can now write Eq. (23) as
~uC
bsfðfAðt0ÞðfsWb þ /F

bsÞg;t; vFÞ þ ðkrfAðt0ÞðfsWb þ /F
bsÞg;rvFÞg þ �uC

bsfðfBðt0ÞðfsWb þ /F
bsÞg;t; vFÞ

þ ðkrfBðt0ÞðfsWb þ /F
bsÞg;rvFÞg ¼ 0. ð27Þ
Note that the above equation is fully characterized based on the values taken by ~uC
bs and �uC

bs and the subgrid
basis function /F

bs.
We are looking to construct a localized scheme for representation of the subgrid solutions. Further, this

localized scheme should hold for all possible values of the coarse nodal coefficients ~uC
bs and �uC

bs. Hence, we
equate the terms in parentheses to zero to obtain the following set of variational formulations defined for each
combination of indices b and s, where, b = 1, . . . ,Nbf and s = 0, . . . ,PC:
ðfAðt0ÞðfsWb þ /F
bsÞg;t; vFÞ þ ðkrfAðt0ÞðfsWb þ /F

bsÞg;rvFÞ ¼ 0; ð28Þ
ðfBðt0ÞðfsWb þ /F

bsÞg;t; vFÞ þ ðkrfBðt0ÞðfsWb þ /F
bsÞg;rvFÞ ¼ 0. ð29Þ
Now, by using the relations A(t 0) + B(t 0) = 1, we can simplify Eq. (29) as follows:
ððfsWb þ /F
bsÞ;t; vFÞ þ ðkrðfsWb þ /F

bsÞ;rvFÞ
� ðfAðt0ÞðfsWb þ /F

bsÞg;t; vFÞ � ðkrfAðt0ÞðfsWb þ /F
bsÞg;rvFÞ ¼ 0. ð30Þ
By combining Eqs. (28) and (30), we obtain the evolution equation for /F
bs
ððfsWb þ /F
bsÞ;t; vFÞ þ ðkrðfsWb þ /F

bsÞ;rvFÞ ¼ 0. ð31Þ
Remark 1. The C2S map is completely characterized given the coarse-scale nodal solution coefficients uC
bsðt0Þ

and /F
bsðx; t0;xÞ (in turn obtained by solving Eq. (31) for each combination of indices b and s).
3.5. Boundary conditions for subgrid basis functions

In order to localize the computation of û to a coarse element, we need an approximate specification of its
boundary conditions along coarse-element edges.

By assuming twice-differentiability of the subgrid basis functions, we can write the strong formulation for
Eq. (31) as: find /F

bs for x 2 DðeÞ and t 2 ½tn; tnþ1� such that
/F
bs;t �r � ðkðx;xÞr/F

bsÞ � r � ðkðx;xÞrWbðxÞfsðxÞÞ ¼ 0. ð32Þ
Notice that the above equation contains $ Æ (k(x,x)$Wb(x)fs(x)) as a source term, whose computation can be
avoided by defining a new variable Ubs
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Ubsðx; t0;xÞ ¼ WbðxÞfsðxÞ þ /F
bsðx; t0;xÞ; ð33Þ
It can be shown that Ubs satisfies the following equation
Ubs;t �r � ðkðx;xÞrUbsÞ ¼ 0. ð34Þ

In order to complete the specification of this equation, we need to specify boundary conditions for Ubs on
the coarse-element boundaries oDðeÞ. We extend ideas from the multiscale finite element method [1] that
indicate that the behavior of Ubs on the boundaries of the coarse element should retain the characteristics
of Eq. (34). Here, we use the Dirichlet boundary condition Ubs ¼ UC

bs on the coarse element boundary,
where, UC

bs satisfies the following reduced partial differential equation for computation from tn to tn + 1
(n = 0,1, . . .).
UC
bs;tðx; t0;xÞ �

o

oc
ðkðx;xÞ

oUC
bs

oc
Þ ¼ 0; x 2 oDðeÞ; ð35Þ

UC
bsðxa; t0;xÞ ¼ dabfsðxÞ; ð36Þ

UC
bsðx; 0;xÞ ¼ UC

bsðx; tn;xÞ; x 2 oDðeÞ; t ¼ tn; ð37Þ
where c is the coordinate used to parameterize the boundary of the coarse element and xa denotes the vertex of
the coarse element DðeÞ where the coarse finite-element basis function Wa takes the value unity. A schematic
showing the calculation of boundary subgrid basis functions for the case of a quadrilateral coarse element is
shown in Fig. 1.

Remark 2. The above specification of boundary conditions for the subgrid basis function is restricted to
polygonal coarse element shapes (quadrilateral, triangles and other).

Let us assume that the subgrid function space VF can be represented as the tensor product space obtained
by combining the space of finite-element basis functions defined on the subgrid mesh [Nb(x),b = 1, . . . ,Nbf]
and Askey polynomials [fr(x), r = 0, . . . ,PF]. We emphasize that the number of terms required for the GPCE
of the subgrid basis functions to converge can be different than PC, the number of terms used in the
discretization of the coarse solution.

We can now express the variational form for Eq. (34) as a matrix–vector equation defined in each coarse
element as follows (for details regarding stochastic finite element solution of a diffusion equation, consult [47]):
½M �fUF
bs;tg þ ½K�fUF

bsg ¼ 0; ð38Þ
where [M(t)], [K(t)] are defined as follows:
½M� ¼ ðNbfs;N afrÞ; ð39Þ
½K� ¼ ðkrNbfs;rN afrÞ; ð40Þ
and fUF
bsg represent the nodal values of the subgrid basis function defined on the subgrid mesh in each coarse

element.
3.6. Affine correction term

The affine correction term uF0 as defined by Eq. (17) leads to the following strong form of equations inside
each coarse element sub-domain
uF0
;t þr � ðkruF0Þ ¼ f ; x 2 DðeÞ. ð41Þ
Burn-in time for VMS simulations: Before proceeding to specify boundary conditions for the affine cor-
rection term, it is necessary to understand its origin as a sum of two contributions, namely, the effect of
sources and sinks at the subgrid level and the effect of the subgrid component of the initial condition
u(x, 0,x) = u0(x,x). Typically, the latter effect is global and the present algorithm does not allow its treat-
ment. However, the effect of the subgrid component of the initial condition tends to decay with time. Thus,
in the VMS simulation, the subgrid basis functions are generated up to a cutoff time (referred here as the
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burn-in time) that is chosen such that the effects of the subgrid component of the initial condition do not
affect the coarse solution. This also ensures that the subgrid basis functions capture sufficient information
about the heterogeneities at the subgrid scale. Thus, whenever the affine correction term is mentioned, it
implies only the effects of sources and sinks at the subgrid level.

Boundary conditions for the affine correction term: Note that the affine correction term does not have any
coarse-scale solution dependence, hence, the assumption that this term goes to zero on coarse element bound-
aries is justified i.e. uF0 = 0 on coarse element boundaries. Furthermore, we assume that the affine correction is
zero at the start of each coarse time-step i.e. uF0(x, 0, x) = 0 (note that the initial conditions here refer to the
local time coordinate t 0=0).

Remark 3. If the coarse-time step is large enough or if the source terms do not have rapid variations in
time, the affine correction term can be assumed to be quasi-static ðuF0

;t ¼ 0Þ. This assumption drastically
reduces the computation time with little loss of accuracy. Also, if the source term is zero and the exact
initial conditions do not have excessive fine-scale fluctuations, we can assume that the affine correction is
identically zero.
3.7. Modified coarse-scale formulation

We can now substitute Ubs and uF0 in the coarse-scale variational formulation given in Eq. (14) to obtain
the following: In each coarse element DðeÞ,
ðuC
bs;tUbs; vCÞ þ ðuC

bsUbs;t; vCÞ þ ðuC
bskrUbs;rvCÞ ¼ ðf ; vCÞ � ðkruF0;rvCÞ � ðuF0

;t ; v
CÞ. ð42Þ
Thus, the affine correction term figures in the modified coarse-scale variational formulation as a sum of two
terms: an anti-diffusive term and a term involving its time derivative [3,4,7].

By choosing VC as the tensor product space obtained by combining the space of coarse element basis func-
tions [Wb(x),b = 1, . . . ,Nbf] and Askey polynomials [fr(x), r = 0, . . . ,PC], we can express Eq. (42) as a matrix–
vector equation on each coarse element DðeÞ
½MðtÞ�fuC
;t g þ ½KðtÞ�fuCg ¼ ff ðtÞg; ð43Þ
where the dependence of [M(t)], [K(t)] and {f(t)} on time comes from the basis functions Ubs and the time
varying source term f(x, t, x), respectively as follows:
½M � ¼ ðUbsðx; t0;xÞWaðxÞfrðxÞÞ;
½K� ¼ ðkðx;xÞrUbsðx; t0;xÞ;rWaðxÞfrðxÞÞ þ ðUbs;tðx; t0;xÞ;WaðxÞfrðxÞÞ;
ff g ¼ ðf ðx; t;xÞ;WaðxÞfrðxÞÞ � ðuF0

;t ðx; t0;xÞ;WaðxÞfrðxÞÞ
� ðkðx;xÞruF0ðx; t0;xÞ;rWaðxÞfrðxÞÞ; ð44Þ
and {uC} represent the nodal values of the coarse solution in each coarse element i.e. the coefficients uC
bs defined

in Eq. (20).

Remark 4. Since, each node requires PC + 1 generalized polynomial chaos coefficients for the representation
of the coarse solution, we have PC + 1 degrees of freedom per node in the coarse-mesh. Also, the matrices
[M(t)], [K(t)] and the vector {f(t)} have terms that contain dynamics happening at the subgrid scale, hence, in
order to reduce computation time, we need to apply some time averaging scheme such that the matrices and
force vector can be written exclusively in terms of the coarse time-step. In this paper, we use a backward-Euler
time integration rule for the coarse solution, hence, the following scheme is adopted in time-stepping from tn

to tn + 1 (where Dt = tn + 1 � tn).
ð½Mðtn þ 1Þ� þ Dt½Kðtn þ 1Þ�ÞfuCðtn þ 1Þg ¼ Dtff ðtn þ 1Þg þ ½MðtnÞ�fuCðtnÞg. ð45Þ

The effect of using the approximate coarse-scale implementation given in Eq. (45) is currently determined by
comparison with the fully-resolved simulation. Further studies are required in this context.
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4. Computational issues

4.1. Special structure of subgrid problems

According to Eq. (34), in order to generate the subgrid basis functions, we need to solve Nbf(PC + 1)
stochastic PDEs in each coarse element. However, a close observation of the structure of the subgrid
problems reveals that by just solving Nbf problems (defined for the basis function Ub0, b = 1, . . . ,Nbf)
in each coarse element, we can generate the remaining subgrid basis functions using the following
relations:
Ubsðx; t0;xÞ ¼ Ub0ðx; t0;xÞfsðxÞ. ð46Þ

By substituting the above relation, Eqs. (34)–(37) are satisfied identically assuming that the governing equa-
tions and boundary conditions for Ub0 in each coarse element are as follows
Ub0ðx; t0;xÞ � r � ðkðx;xÞrUb0ðx; t0;xÞÞ ¼ 0; x 2 DðeÞ; ð47Þ

where Ub0 satisfies the following reduced differential equation on the coarse element boundary (parameterized
here by the coordinate c, see Fig. 1).
UC
b0;tðx; t0;xÞ �

o

oc
kðx;xÞ

oUC
b0

oc

 !
¼ 0; x 2 oDðeÞ;

UC
b0ðxa; t0;xÞ ¼ dab;

UC
b0ðx; 0;xÞ ¼ WbðxÞ; x 2 oDðeÞ; t ¼ 0;

¼ UC
b0ðx; tn;xÞ; x 2 oDðeÞ; t ¼ tn:
Remark 5. As a special case, if the diffusion coefficient is periodic with period L, we can choose the coarse
element width to be a multiple of L. It can be shown that the subgrid basis functions are the same
for all coarse elements. This enables us to achieve tremendous reduction in memory storage and
computational cost since we can calculate and store the subgrid solution for a single coarse element and
re-use it for element matrix–vector calculations. However, we emphasize that our approach does not
require periodicity.
4.2. Quasistatic subgrid solution

In many practical problems of interest, the assumption of a quasistatic subgrid solution is fairly accurate,
i.e. in the governing equations for subgrid basis functions Ub0, we assume that Ub0,t � 0. This further reduces
the computational cost since, the subgrid basis functions can be computed once and for all at the start of the
computation and also, the memory required to store stationary subgrid basis is far less than that for storing
subgrid dynamics.

4.3. Post-processing: fine-scale solution reconstruction

Let us assume that the coarse-scale solution, the subgrid basis functions and the affine-correction at a
particular time-step are uC(x, x), Ub0(x, x) and uF0(x, x), respectively. The time dependence is not shown here
for clarity sake. Also, we emphasize that all calculations in this section are performed on the subgrid mesh
associated with each coarse element DðeÞ.

Inside a given coarse element DðeÞ, we calculate the reconstructed fine-scale VMS solution as follows:
u ¼
XNbf

b¼1

XP C

s¼0

uC
bsUbs þ uF0ðx;xÞ; ð48Þ
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where Ubs ¼ /F
bs þWbfs, is the sum of coarse and subgrid basis functions defined on DðeÞ. Let us now consider

the GPCE expansions for Ubs (after substituting Eq. (46)) and uF0 as follows:
Ubs ¼ Ub0fs ¼
XP F

r¼0

Ub0rfsfr; uF0 ¼
XP F

r¼0

uF0
r fr; ð49Þ
wherein PF + 1 is the number of terms used in the GPCE expansion of Ub0 and uF0. Now, we can write
Eq. (48) as follows:
u ¼
XNbf

b¼1

XP C

s¼0

XP F

r¼0

uC
bsUb0rðxÞfrðxÞfsðxÞ þ

XP F

r¼0

uF0
r ðxÞfrðxÞ; x 2 DðeÞ. ð50Þ
The mth term in the GPCE of the reconstructed fine-scale VMS solution u can now be written as follows:
um ¼
XNbf

b¼1

XP C

s¼0

XP F

r¼0

uC
bsUb0r

hfrðxÞfsðxÞfmðxÞi
hfmðxÞfmðxÞi

þ uF0
m ðxÞ; ð51Þ
where Æf(x)æ is used to denote the mathematical expectation of the random function f(x).
Notice that the construction of the fully-resolved fine-scale solution is just a post-processing step. In actual

computation, we just need to store the subgrid basis functions, the affine correction and the coarse-scale term.
Note: Henceforth, in Section 5, we will denote PC as the coarse-scale GPCE order and PF as the fine-scale

GPCE order.
Comparison of the reconstructed VMS fine-scale solution with a fully-resolved stochastic FEM solution:

Assume that the reconstructed fine-scale VMS solution (see Eq. (51)) and the fully-resolved stochastic finite
element solution be represented in their respective GPCEs as follows:
U vms ¼
XP

i¼0

U vms
i fiðxÞ; and U fem ¼

XP

i¼0

U fem
i fiðxÞ. ð52Þ
We define the upscaling L2 error measures with respect to each GPCE coefficient as follows:
Ei :¼ kU vms
i � U fem

i kL2ðDÞ. ð53Þ
Note that the error is defined with respect to spatial domain only. The above error measure is not unique and
in certain circumstances, it is important to consider other error measures (consult [40] for a comprehensive
survey).

5. Numerical examples

Unless otherwise specified, all computations in this section are performed on a [0, 1] · [0, 1] square domain.
Bilinear quadrilateral elements are used for spatial finite element interpolation and a Legendre-chaos is used
for representation of output in its GPCE (note that Legendre-chaos is the optimal representation for input
with a uniform probability distribution) [19,32,25].

In this section, we solve two examples with different uncertainty models. In Example I, we explicitly con-
sider a scale separation in the model for diffusion coefficient, such that the coarse length scale is of order 1 and
the fine length scale is a random combination of the parameters �0 and �1. In the second example, there is no
explicit length scale for the coarse and fine-scale solutions (diffusion in microstructures). In particular, we con-
sider a two phase microstructure where the uncertainty in the diffusion coefficient is due to lack of precise
knowledge of the diffusion coefficients of its constituents.

Also, the purpose of each example is different. In Example I, we study the behavior of the reconstructed
fine-scale VMS solution for the dynamic subgrid assumption, the effect of quasistatic subgrid assumption
on upscaling accuracy, and the shortcomings in the dynamic subgrid model with respect to subgrid boundary
condition and initial condition models (see Section 3.6). In Example II, we provide a comparison of the fully-
resolved stochastic finite element solution with the reconstructed fine-scale VMS solution with a quasistatic
subgrid assumption, and the coarse-scale VMS solution.
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We use a fully-resolved GPCE simulation of the diffusion equation to obtain the reference solution for com-
parison with the upscaled VMS solutions. We note that the GPCE based stochastic finite element implemen-
tation for the stochastic diffusion equation has been implemented and tested against Monte Carlo and other
analytical solutions by the authors [47] and others [39,48].

Remark 6. In both examples, we use an important assumption that the diffusion coefficient can be represented
using a few random variables (one in Example I and two in Example II). This is crucial to the success of GPCE
formulations wherein, the number of terms required for convergence in the GPCE increases exponentially with
the number of input random variables [22,37]. If the diffusion coefficient has short range variability and
subsequently a steeply decaying covariance kernel, then Monte-Carlo is the only way for uncertainty analysis
[26,25].
5.1. Example I: transient diffusion in a functionally graded material

We consider transient diffusion in a functionally graded material with a diffusion coefficient that has a uni-
form random distribution with the following functional form
Table
Comp

Coarse
Subgri
GPCE
GPCE
Mesh
GPCE
Coarse
Subgri
Time s
Times
Durati
Burn-i
kðx;xÞ ¼ k0ðxÞ þ k1ðxÞnðxÞ; ð54Þ
where n(x) is a uniform random variable between �1 and 1, and the coefficients k0(x) and k1(x) are defined
as
k0ðxÞ ¼ 1þ 2þ P sinð2px=�0Þ
2þ P cosð2py=�0Þ

þ 2þ sinð2py=�0Þ
2þ P sinð2px=�0Þ

� ��1

;

k1ðxÞ ¼
2þ P sinð2px=�1Þ
2þ P cosð2py=�1Þ

þ 2þ sinð2py=�1Þ
2þ P sinð2px=�1Þ

� ��1

;

where the parameters �0 = 0.08 and �1 = 0.04 control the periodicity of k(x,x). The parameter P = 1.8 con-
trols the ratio of maximum to minimum value of the diffusion coefficient. This specification of the diffusion
coefficient can lead to large deviations about the mean solution (of the order of 40%).

Since the diffusion coefficient can be represented using one uniform random variable n, the KL dimension
of the problem is one. Hence, we use a one-dimensional GPCE in Legendre chaos polynomials [37]. The fully-
resolved finite element solution is approximated using the following one-dimensional, fourth-order Legendre
chaos expansion (yielding a 5 term expansion)
uðx; t; hÞ ¼ u0 þ u1f1ðxÞ þ u2f2ðxÞ þ u4f4ðxÞ þ u4f4ðxÞ;

where (f1 = n, f2 = (3n2 � 1)/2,. . .) [25], and the expansion coefficients (u0, u1, u2,. . .) are deterministic func-
tions of x and t. The computational details for the example are provided in Table 1.
1
utational parameters used in Example I

mesh discretization 20 · 20 and 10 · 10, respectively
d mesh discretization 10 · 10 and 20 · 20, respectively
on coarse grid one-dimensional, third-order Legendre chaos
on subgrid one-dimensional, third-order Legendre chaos

for fully-resolved case 200 · 200
for fully-resolved case one-dimensional, fourth-order Legendre chaos
time step used 1e � 2 (non-dimensional)

d time step used 1e � 3 (non-dimensional)
tep for fully-resolved case 5e � 4 (non-dimensional)
for comparison of solutions 0.05 and 0.2
on of simulation 0–0.2 (non-dimensional)
n time for VMS simulation 0.05
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As a representative example, we consider the decay of a sine hill with time. This example comprises of an
initial sinusoidal temperature distribution that decays with time. It is of interest to study the effect of upscaling
error on the solution profile by comparing the VMS solutions with a fully-resolved finite-element solution.

The initial and boundary conditions are deterministic and are chosen as follows:
uðx; 0;xÞ ¼ sinðpxÞ sinðpyÞ; ðx; yÞ 2 ½0; 1�;
ujx¼0 ¼ ujx¼1 ¼ ujy¼0 ¼ ujy¼1 ¼ 0:
To assess the accuracy of the upscaling algorithm and to calculate the propagation of upscaling error with time,
we performed three simulations: (i) A fully-resolved stochastic FEM computation, (ii) Stochastic VMS com-
putation with dynamic calculation on the subgrid (C2S map and the affine corrections are calculated and stored
for each coarse time step), and (iii) Stochastic VMS computation with a quasistatic subgrid assumption (a stea-
dy-state solution is obtained for the C2S map and the affine correction at the start of the computation).

Comparison of fully-resolved and stochastic VMS computations: The reconstructed fine-scale solution viz.
ðuC þ ûF þ uF0Þ is obtained for the stochastic VMS computations at times 0.05 and 0.2, respectively. At time
0.05, the time level marking the end of burn-in period (see Section 3.6), the first few coefficients (u0, u1 and u2)
in the GPCE expansion of the fully-resolved stochastic FEM solution are shown in Fig. 2A–C, respectively.
The same coefficients (u0, u1 and u2) in the reconstructed fine-scale solution obtained using a quasistatic sub-
grid assumption are shown in Fig. 2D–F. The corresponding plots for a dynamic subgrid assumption are
shown in Fig. 2G–I.

The corresponding comparison plots at the final time level 0.2 are shown in Fig. 3A through I. It can be noted
that both dynamic and quasistatic subgrid assumptions capture the essential solution characteristics, namely, a
decaying sine hill profile. However, in comparison to the dynamic subgrid assumption, the relative magnitude of
the GPCE coefficients in the upscaled solution using the quasistatic subgrid assumption are closer to the values of
the corresponding GPCE coefficients obtained using a fully-resolved stochastic finite element simulation.

L2 error between fully-resolved and reconstructed fine-scale solutions: To further check the accuracy of the
proposed stochastic VMS method with respect to the coarse and fine-scale discretizations, we perform simu-
lations for two different configurations: (i) A 20 · 20 coarse-mesh with a 10 · 10 subgrid mesh in each coarse
element, and (ii) A 10 · 10 coarse-mesh with a 20 · 20 subgrid mesh in each coarse element. As discussed pre-
viously in Section 4.3, the error between the fully-resolved stochastic finite element solution and the fine-scale
reconstruction of the VMS solution is characterized by the error in each GPCE coefficient as described by Eqs.
(52) and (53). The error terms for a quasistatic subgrid assumption are plotted as a function of time for the
case of a 10 · 10 coarse-mesh with a 20 · 20 subgrid mesh in Fig. 4A and a 20 · 20 coarse-mesh with a 10 · 10
subgrid mesh in Fig. 4B. The corresponding error plots for the dynamic subgrid with a burn-in time of 0.05 are
given in Fig. 4C and D, respectively. The various error terms in GPCE coefficients are scaled in order to show
them on the same plot.

There are two observations to be made from the error plot:

(1) The error values for the quasistatic subgrid assumption are consistently lower than those with a dynamic

subgrid assumption: This is attributed to the insufficient accuracy of the boundary conditions and initial
conditions provided for the subgrid C2S map and the subgrid affine correction term. It is assumed that at
the start of simulation that the subgrid C2S map and the affine correction terms are identically zero in
each coarse element. This implies that the boundary conditions for the C2S map are essentially defined at
the coarse-scale. Hence, until the subgrid solutions evolve in time and reach an appreciable value, the
coarse-scale variational formulation will contain a negligible subgrid contribution. Further, the effect
of subgrid contribution of initial conditions on the evolution of affine correction term is not accounted
for. Unless, these shortcomings are resolved (as a part of future research), a quasistatic subgrid assump-
tion is a better alternative to the dynamic subgrid assumption.

(2) The error term E1 has a non-monotonic behavior: Initially, the solution is deterministic. As we step in
time, the higher-order terms in GPCE of the solution begin to evolve. The maximum rate of evolution
is for the first-order term and hence the error increases. However, further ahead in time, the error terms
stabilize and show pronounced decaying characteristics.



Fig. 2. Example I – decay of a sine hill (results at time = 0.05): (A)–(C) Coefficients u0, u1 and u2 obtained from the GPCE of the fully-
resolved stochastic finite element solution. (D)–(F) Coefficients u0, u1 and u2 obtained from the GPCE of the fine-scale reconstruction of
the VMS solution with a quasistatic subgrid assumption. (G)–(I) Coefficients u0, u1 and u2 obtained from the GPCE of the fine-scale
reconstruction of the VMS solution with a dynamic subgrid assumption.
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5.2. Example II: transient diffusion in a two-phase microstructure

A gray scale image of a representative two-phase (a and b) microstructure is shown in Fig. 5 [49]. The inten-
sities (I) are scaled to [0,1]. Let pure a-phase and pure b-phase be associated with scaled intensities I = 0 and
I = 1, respectively. Any other intensity value between 0 and 1 is associated with a mixture of a and b phases.



Fig. 3. Example I – decay of a sine hill (results at time = 0.2): (A)–(C) Coefficients u0, u1 and u2 obtained from the GPCE of the fully-
resolved stochastic finite element solution. (D)–(F) Coefficients u0, u1 and u2 obtained from the GPCE of the fine-scale reconstruction of
the VMS solution with a quasistatic subgrid assumption. (G)–(I) Coefficients u0, u1 and u2 obtained from the GPCE of the fine-scale
reconstruction of the VMS solution with a dynamic subgrid assumption.
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Probability model – We assume that the pure a and pure b-phases have the following uniformly distributed
thermal conductivities
kaðxÞ ¼ ka0 þ ka1n1ðxÞ; and kbðxÞ ¼ kb0 þ kb1n2ðxÞ; ð55Þ

where n1(x) and n2(x) are two independent uniform random variables defined on the interval [�1,1]. We use
the following mixture model for defining the thermal conductivity at a given location on the microstructure:
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Fig. 4. Example I – decay of a sine hill: Plot of L2 error in GPCE coefficients vs time: (Quasistatic subgrid case). (A) For a 10 · 10 coarse-
mesh with a 20 · 20 subgrid mesh. (B) For a 20 · 20 coarse-mesh with a 10 · 10 subgrid mesh. (Dynamic subgrid case) (C) For a 10 · 10
coarse-mesh with a 20 · 20 subgrid mesh. (D) For a 20 · 20 coarse-mesh with a 10 · 10 subgrid mesh.
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kðx;xÞ ¼ ðkbðxÞ � kaðxÞÞIðxÞ þ kaðxÞ; ð56Þ

where I(x) is the scaled intensity at a point x on the microstructure. Thus, Eq. (56) yields the following two-
dimensional random variable model for thermal conductivity:
kðx;xÞ ¼ k0ðxÞ þ k1ðxÞn1ðxÞ þ k2ðxÞn2ðxÞ;
k0ðxÞ ¼ ðkb0 � ka0ÞIðxÞ þ ka0;

k1ðxÞ ¼ ka1ð1� IðxÞÞ; and k2ðxÞ ¼ kb1IðxÞ: ð57Þ
GPCE model – Since the input distribution is uniform (two-dimensional), a two-dimensional, third-order Legen-
dre chaos expansion (yielding a 10 term expansion) was used for representing the solution. The first few terms
in the expansion are shown below:
uðx; t; hÞ ¼ u0 þ u1n1ðxÞ þ u2n2ðxÞ þ u3ð3n2
1ðxÞ � 1Þ=2;þu4n1ðxÞn2ðxÞ þ u5ð3n2

2ðxÞ � 1Þ=2þ � � � ; ð58Þ

where it is tacitly assumed that the expansion coefficients u0, u1 and so forth are deterministic functions of x

and t.
Here, we choose the following initial condition
u0ðx;xÞ ¼ 0; x ¼ ðx; yÞ 2 ½0; 1� � ½0; 1�; x 2 X; ð59Þ



Fig. 5. A gray scale plot of a two-phase (a–b) microstructure. The intensities are scaled to the interval [0,1] with zero representing the pure
a-phase and one representing the pure b-phase.
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and the following boundary conditions are imposed
Table
Compu

Coarse
Subgri
GPCE
GPCE
Mesh
GPCE
Coarse
Subgri
Time s
Times
Durati
Burn-i
k
ou
oy
¼ 0; at y ¼ 0; 1; u ¼ 0; at x ¼ 1; u ¼ 1; at x ¼ 0. ð60Þ
The computational parameters for the example are provided in Table 2.
For the first simulation, we used a 20 · 20 coarse-mesh with an underlying 10 · 10 subgrid mesh for each

coarse element. The coefficients (u0, u1 and u2) in the GPCE expansion of the solution at time 0.05 as obtained
in the fully-resolved stochastic finite element simulation are shown in Figs. 6A–C, respectively. The same coef-
ficients obtained by reconstruction of the fine-scale solution (from the coarse-scale solution obtained using the
stochastic VMS method) using the quasistatic assumption are shown in Figs. 6D–F, respectively. The com-
puted upscaled coarse solution (i.e. the coarse-scale solution obtained from the VMS formulation after the
application of C2S map and the affine correction term) is shown in Figs. 6G–I, respectively. In order to com-
pare the upscaled coarse solution for various coarse discretizations, we recomputed the coarse solution for a
2
tational parameters used in Example II

mesh discretization 20 · 20 and 10 · 10, respectively
d mesh discretization 10 · 10 and 20 · 20, respectively
on coarse grid two-dimensional, third-order Legendre chaos
on subgrid two-dimensional, third-order Legendre chaos

for fully-resolved case 200 · 200
for fully-resolved case two-dimensional, fourth-order Legendre chaos
time step used 1e � 3 (non-dimensional)

d time step used 5e � 4 (non-dimensional)
tep for fully-resolved case 1e � 3 (non-dimensional)
for comparison of solutions 0.05 and 0.2
on of simulation 0–0.2 (non-dimensional)
n time for VMS simulation 0.05



Fig. 6. Example II – diffusion in a microstructure (results at time 0.05): Coefficients u0, u1 and u2 in the GPCE of the solution for the
following: (A)–(C) Fully-resolved stochastic finite element solution. (D)–(F) Fine-scale reconstruction of the VMS solution with a
quasistatic subgrid assumption (20 · 20 coarse-mesh, 10 · 10 subgrid mesh). (G)–(I) Coarse-scale solution (20 · 20 coarse-mesh). (J)–(L)
Coarse-scale solution (10 · 10 coarse-mesh).
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Fig. 7. Example II – diffusion in a microstructure (results at time 0.2): Coefficients u0, u1 and u2 in the GPCE of the solution for the
following: (A)–(C) Fully-resolved stochastic finite element solution. (D)–(F) Fine-scale reconstruction of the VMS solution with a
quasistatic subgrid assumption (20 · 20 coarse-mesh, 10 · 10 subgrid mesh). (G)–(I) Coarse-scale solution (20 · 20 coarse-mesh). (J)–(L)
Coarse-scale solution (10 · 10 coarse-mesh).
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Fig. 8. Example II – (A)–(C) Fully-resolved stochastic FEM simulation: coefficients u3, u4 and u5 in the GPCE expansion of the solution.
(D)–(F) Fine-scale reconstruction of the stochastic solution using a quasistatic subgrid assumption in the VMS simulation: Coefficients u3,
u4 and u5 in the GPCE expansion of the solution obtained at time 0.2 (non-dimensional).
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10 · 10 coarse-mesh with an underlying 20 · 20 subgrid mesh. The results are shown in Figs. 6J–L. It can be
observed that the coarse solution is more diffused. This indicates that the coarse-mesh requires an optimum
discretization level for maintaining solution accuracy. More research is required in this regard. Finally, the
corresponding coefficients at time 0.2 are shown in Figs. 7A–I.

Plots showing comparison of higher-order GPCE coefficients in the fully-resolved stochastic finite element
solution and the reconstructed fine-scale VMS solution are shown in Figs. 8A–F. It can be noticed that the
GPCE coefficient u6 in the reconstructed fine-scale VMS solution exhibits oscillations and is consequentially
incorrect. This could be attributed to the L2 nature of the upscaling method. It can be noticed that the scale of
the u5 term (order of 10�7) is negligible in comparison with the mean solution u0 (order of 10�1) or the first-
order GPCE coefficients u1 and u2 (order of 10�4 and 10�3, respectively). As a result, the contribution of error
in u5 to the L2 error in the upscaled solution is negligible. To improve the solution quality for such small
GPCE terms, we would require a weighted upscaling technique. This would be a part of our future research.

6. Conclusions

A stochastic variational multiscale formulation was proposed for addressing transient diffusion problems in
random heterogeneous media with the diffusion coefficient having multiple length scales. The main idea was to
capture the diffusion dynamics on a highly coarse-mesh by including localized solutions to subgrid problems.
For this, the variational formulation for the governing diffusion equation was decomposed into a coarse-scale
and a subgrid scale part. The subgrid part was then localized in each coarse element sub-domain and a class of
subgrid models was derived for one-step generalized trapezoidal time integration rules. The generalized
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polynomial chaos method was used for representation and solution of all the resulting stochastic PDEs (the
coarse variational formulations and the localized subgrid problems).

The algorithms presented do not yet consider the effect of resonance error in linking the coarse and fine/
subgrid scales in any rigorous detail. Further requirements include developing a mathematically consistent
adaptive algorithm for selecting the number of element sub-divisions in each fine-scale mesh, adaptive gener-
ation of subgrid bases and other. Also to be considered in future works are the issues of improving fine-scale
reconstruction of the stochastic solution using a weighted subgrid model. These issues are currently being
addressed for extending the current VMS algorithms to the solution of advection-dominant problems in
heterogeneous media.
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